Peer-reviewed Journal papers
Researchgate (publications available for download).
The amazing Computational Biomechanics Group students are highlighted in green.
-
- Csala, H. Mohan, A., Livescu, D., Arzani, A., Physics-constrained coupled neural differential equations for one dimensional blood flow modeling, arXiv preprint arXiv:2411.05631, 2024.
- Viknesh, S., Tohidi, A., Afghah, F., Stoll, R., Arzani, A.,Role of flow topology in wind-driven wildfire propagation, arXiv preprint arXiv:2411.04007, 2024.
- Viknesh, S., Tatari, Y., Arzani, A., ADAM-SINDy: An Efficient Optimization Framework for Parameterized Nonlinear Dynamical System Identification, arXiv preprint arXiv:2410., 2024.
- Tatari, Y., Smith, T. A., Hu, Y., Arzani, A., Optimizing distal and proximal splenic artery embolization with patient-specific computational fluid dynamics, Journal of Biomechanics, 2024.
- Csala, H., Amili, O., D’Souza, R. M ., Arzani, A., A comparison of machine learning methods for recovering noisy and missing 4D flow MRI data , International Journal for Numerical Methods in Biomedical Engineering, 2024.
- Arzani, A., Yuan, L., Newell, P., Wang, B., Interpreting and generalizing deep learning in physics-based problems with functional linear models, Engineering with Computers, 2024. Also available on arxiv.
- Yeh, H. P., Bayat, M., Arzani, A., Hattel, J. H. Accelerated Process Parameter Selection of Polymer-based Selective Laser Sintering via Hybrid Physics-informed Neural Network and Finite Element Surrogate Modelling, Applied Mathematical Modelling, 2024.
- Csala, H., Mohan, A. T., Livescu, D., Arzani, A., Modeling Coupled 1D PDEs of Cardiovascular Flow with Spatial Neural ODE, NeurIPS, 2023.
- Pirola, S., Arzani, A., Chiastra, C., Sturla, G., Editorial: Image-based computational approaches for personalized cardiovascular medicine: improving clinical applicability and reliability through medical imaging and experimental data, Frontiers in Medical Technology, 2023.
- Aliakbari, M., Soltany Sadrabadi, M., Vadasz, P., Arzani, A., Ensemble physics informed neural networks: A framework to improve inverse transport modeling in heterogeneous domains, Physics of Fluids, 2023.
- Arzani, A., Cassel, K. W., D’Souza, R. M., Theory-guided physics-informed neural networks for boundary layer problems with singular perturbation, Journal of Computational Physics, 2023.
- Csala, H., Dawson, S., Arzani, A., Comparing different nonlinear dimensionality reduction techniques for data-driven unsteady fluid flow modeling, Physics of Fluids,, 2022.
- Aliakbari, M., Mahmoudi, M., Vadasz, P., Arzani, A., Predicting high-fidelity multiphysics data from low-fidelity fluid flow and transport solvers using physics-informed neural networks, International Journal of Heat and Fluid Flow, 2022.
- Mahmoudi, M., Jennings, C., Pereira, K., Hall, A., Arzani, A., Guiding the prostatic artery embolization procedure with computational fluid dynamics, Journal of Biomechanical Engineering, 2022.
- Arzani, A., Wang, J. X., Sacks, M. S., Shadden, S. C. Machine learning for cardiovascular biomechanics modeling: challenges and beyond, Annals of Biomedical Engineering,, 2022.
- Baek, S., Arzani, A., Current state-of-the-art and utilities of machine learning for detection, monitoring, growth prediction, rupture risk assessment, and post-surgical management of abdominal aortic aneurysms, Applications in Engineering Science, 2022.
- Soltany Sadrabadi, M., Eskandari, M., Feigenbaum, H. P., Arzani, A., Local and global growth and remodeling in calcific aortic valve disease and aging, Journal of Biomechanics, 128(9), 110773, 2021.
- Arzani, A., Wang, J. X., D’Souza, R. M. Uncovering near-wall blood flow from sparse data with physics-informed neural networks, Physics of Fluids, 33, 071905, 2021. Editor’s Featured Article. Also available on arxiv.
- Habibi, M., D’Souza, R. M., Dawson, S. T. M., Arzani, A. Integrating multi-fidelity blood flow data with reduced-order data assimilation, Computers in Biology and Medicine, 14, 104566, 2021.
- Arzani, A., Dawson, S. T. M., Data-driven cardiovascular flow modeling: examples and opportunities, Journal of the Royal Society Interface, 18, 20200802, 2021. Also available on arxiv.
- Soltany Sadrabadi, M., Hedayat, M., Borazjani, I., Arzani, A. Fluid-structure coupled biotransport processes in aortic valve disease, Journal of Biomechanics, 117(5),110239, 2021.
- Meschi, S. S, Farghadan, A., Arzani, A. Flow topology and targeted drug delivery in cardiovascular disease, Journal of Biomechanics (invited special issue), 19, 110307, 2021.
- Mahmoudi, M., Farghadan, A., McConnell, D. R., Barker, A. J., Wentzel, J. J., Budoff, M. J., Arzani, A., The story of wall shear stress in coronary artery atherosclerosis: biochemical transport and mechanotransduction, Journal of Biomechanical Engineering, 143(4): 041002, 2021.
- Fathi, M. F., Perez-Raya, I., Baghaie, A., Berg, P., Janiga, G., Arzani, A., D’Souza, R. M., Super-resolution and Denoising of 4D-Flow MRI Using Physics-Informed Deep Neural Nets, Computer Methods and Programs in Biomedicine, 197, 105729, 2020.
- Habibi, H., Dawson, S. T. M., Arzani, A., Data-Driven Pulsatile Blood Flow Physics with Dynamic Mode Decomposition, Fluids, 5(3). 111, 2020.
- Farghadan, A., Poorbahrami, K., Jalal, S., Oakes, J. M., Coletti, F., Arzani, A., Particle transport and deposition correlation with near-wall flow characteristic under inspiratory airflow in lung airways, Computers in Biology and Medicine, 120. 103703, 2020.
- Arzani, A., Coronary artery plaque growth: a two-way coupled shear stress driven model, International Journal for Numerical Methods in Biomedical Engineering, 36, e3293, 2020.
- Farghadan, A., Coletti, F., Arzani, A., Topological analysis of particle transport in lung airways: predicting particle source and destination, Computers in Biology and Medicine, 115. 103497, 2019
- Reza, M. M. S., Arzani, A., A critical comparison of different residence time measures in aneurysms, Journal of Biomechanics, 88. 122-129, 2019.
- Farghadan, A., Arzani, A., The combined effect of wall shear stress topology and magnitude on cardiovascular mass transport, International Journal of Heat and Mass Transfer, 131, 2019.
- Arzani, A., Accounting for residence-time in blood rheology models: do we really need non-Newtonian blood flow modeling in large arteries?, Journal of the Royal Society Interface, 15(146), 2018.
- Hansen, K. B., Arzani, A. and Shadden, S. C., Finite element modeling of near‐wall mass transport in cardiovascular flows, International Journal for Numerical Methods in Biomedical Engineering, 35, 2019.
- Arzani, A., Shadden, S. C., Wall shear stress fixed points in cardiovascular fluid mechanics, Journal of Biomechanics, 73, 145-152, 2018.
- Arzani, A., Mofrad, M. R. K., A strain-based finite element model for calcification progression in aortic valves, Journal of Biomechanics, 65, 216-220, 2017.
- Arzani, A., Masters, K. S., Mofrad, M. R. K., Multiscale systems biology model of calcific aortic valve disease progression, ACS Biomaterials Science & Engineering, 3(11), 2922-2933, 2017.
- Arzani, A., Gambaruto, A. M., Chen, G. and Shadden, S. C., Wall shear stress exposure time: A Lagrangian measure of near-wall stagnation and concentration in cardiovascular flows, Biomechanics and Modeling in Mechanobiology, 16(3), 787–803, 2017.
- Arzani, A., Gambaruto, A. M., Chen, G. and Shadden, S. C., Lagrangian wall shear stress structures and near wall transport in high Schmidt aneurysmal flows, Journal of Fluid Mechanics, 790, 158-172, 2016.
- Arzani, A. and Shadden, S. C. Characterizations and correlations of wall shear stress in aneurysmal flow, Journal of Biomechanical Engineering 138(1), 014503-1-10, 2015.
- Hansen, K. B., Arzani, A. and Shadden, S. C., Mechanical platelet activation potential in abdominal aortic aneurysms, Journal of Biomechanical Engineering, 137(4), 041005-1-8, 2015.
- Shadden, S. C. and Arzani, A., Lagrangian postprocessing of computational hemodynamics, Annals of Biomedical Engineering, 43(1), 41-58, 2015.
- Arzani, A., Suh, G. Y., Dalman, R. L. and Shadden, S. C., A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms, American Journal of Physiology- Heart and Circulatory Physiology, 307(12), H1786-H1795, 2014.
- Arzani, A., Les, A. S., Dalman, R. L. and Shadden, S. C., Effect of exercise on patient specific abdominal aortic aneurysm flow topology and mixing, International Journal for Numerical Methods in Biomedical Engineering, 30(2), 280-295, 2014.
- Steinman, D. A., Hoi, Y., Fahy, P., Morris, L., Walsh, M. T., Aristokleous, N., Anayiotos, A. S., Papaharilaou, Y., Arzani, A., Shadden, S. C., et al., Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: The ASME 2012 Summer Bioengineering Conference CFD Challenge, Journal of Biomechanical Engineering, 135(2), 021016-1-13, 2013.
- Arzani, A. and Shadden, S. C., Characterization of the transport topology in patient-specific abdominal aortic aneurysm models, Physics of Fluids, 24(8), 081901-1-16, 2012.
- Arzani, A., Dyverfeldt, P., Ebbers, T. and Shadden, S. C., In vivo validation of numerical prediction for turbulence intensity in an aortic coarctation, Annals of Biomedical Engineering, 40(4), 860-870, 2012.